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Abstract. The one-loop effective action of non-commutative scalar field theory with cubic self-interaction
is studied. Utilizing the worldline formulation, both the planar and non-planar parts of the effective action
are computed explicitly. We find complete agreement of the result with the Seiberg–Witten limit of a string
worldsheet computation and with the standard Feynman diagrammatics. We prove that, in the low-energy
and large non-commutativity limit, the non-planar part of the effective action is simplified enormously and
is resummable into a quadratic action of scalar open Wilson line operators.

1 Introduction

Non-commutative field theories are field theories defined
on non-commutative spacetime, whose coordinates are
promoted to operators:[

xa, xb
]
= iθab,

and fields are multiplied in terms of the �-product,

A(x) � B(y) := exp�

(
i
2
∂x ∧ ∂y

)
A(x)B(y),

implying non-local interactions. Thus, the physical aspects
of these theories are suspected to be significantly differ-
ent from the conventional (commutative) field theory. One
of the most significant features is the phenomenon of
ultraviolet–infrared (UV–IR) mixing. Motivated partly by
this phenomenon, in [1] we have studied the effective ac-
tion of non-commutative scalar field theories and have
found that, remarkably, the non-planar part of the effec-
tive action is expressible in terms of scalar open Wilson
line operators – the scalar counterpart of the open Wilson
lines [2–5] in non-commutative gauge theories. Specifically,
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for λ[Φ3]�-theory, the non-planar part of the one-loop ef-
fective action is given by

Γnp[Φ] =
�

2

∫
ddk
(2π)d

Wk[Φ]K̃d/2(k ◦ k)W−k[Φ], (1.1)

in the low-energy, large non-commutativity limit, where

Wk[Φ] := Pt
∫
ddx

× exp�
(

−g
∫ 1

0
dt|ẏ(t)|Φ(x+ y(t))

)
� eik·x

(ΦnW )k[Φ] :=
(

− ∂

∂g

)n
Wk[Φ], n = 1, 2, 3, · · · ,(

g :=
λ

4m

)
(1.2)

denote the scalar open Wilson line operators and K̃ rep-
resents the “propagator” of the state created by the open
Wilson lines; see Fig. 1. In [1], much as their counter-
parts in non-commutative gauge theories [2–5], we have
also shown that the scalar open Wilson line operators
are appropriate interpolating operators for “dipoles” –
weakly interacting, non-local objects describing excita-
tions in non-commutative field theories. Recall that these
dipoles obey the so-called “non-commutative dipole rela-
tion”:

∆xa = θabkb, (1.3)

where ka and ∆xa denote center-of-mass momentum and
dipole moment, respectively. As such, the dipoles are ubiq-
uitous to any non-commutative field theory, an aspect
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Fig. 1. Scalar open Wilson line representation of the non-
planar part of the one-loop effective action. The open Wilson
line is an interpolating field of a dipole, whose propagation is
governed by the kernel K(k ◦ k) in (1.1)

which would explain why the open Wilson line operators
play prominent roles, not only in gauge theories but also
in scalar field theories, in which neither gauge invariance
nor a gauge field is present.
In this paper, in view of the potential importance and

far-reaching consequences of the results, (1.1) and (1.2),
we present a detailed computation of the one-loop effec-
tive action in λ[Φ3]�-theory. In [1], the effective action was
calculated via the standard Feynman diagrammatics. To
supplement the method, in this paper, we will be comput-
ing the effective action by the worldline method extended
to non-commutative field theories, and make a detailed
comparison, wherever possible, with methods and results
in the standard Feynman diagrammatics as well as in the
point-particle limit of the open string worldsheet compu-
tation. For comparison, we compute both the planar and
the non-planar parts of the one-loop effective action, but
in the low-energy, large non-commutativity limit. In this
limit, as is well known, the Weyl–Moyal correspondence
enables us to map the non-commutative λ[Φ3]�-theory in
d dimensions to large-N , U(N) matrix-valued λTr[Φ3]-
theory in (d−2) dimensions. The large non-commutativity
limit also allows us to recast the non-planar part of the ef-
fective action into the form (1.1). Somewhat surprisingly,
the planar part of the one-loop effective action is not re-
castable in terms of closed Wilson loop operators – the
putative “master” fields in matrix-valued field theories in
the N → ∞ limit.
This paper is organized as follows. In Sect. 2, adopt-

ing the worldline formulation, we compute the one-loop
N -point, one-particle-irreducible Green functions of non-
commutative λ[Φ3]�-theory. In doing so, we also observe
that non-commutative vertex operators are modified into
a form showing the dipole relation (1.3) manifestly. In
Sect. 3, we compare the result of Sect. 2 with an open
string computation of the N -point S-matrix amplitude at
one loop, and find complete agreement in the Seiberg–
Witten scaling limit [6]. In Sect. 4, based on the results in
Sects. 2 and 3, we compute the one-loop effective action,
for both planar and non-planar contributions, by sum-
ming over the N -point Green functions. Several remarks
and discussions are relegated to the last section.

Our notation is as follows. The spacetime is taken d-
dimensional, Wick rotated to Euclidean signature, with
metric Gab. Spacetime indices are denoted a, b, c, · · · =
1, 2, · · · , d. Products involving successively increasing pow-
ers of the non-commutativity parameter θab are denoted

p · q := paG
abqb, p ∧ q := paθ

abqb,

p ◦ q := pa(−θ2)abqb · · ·

2 λ[Φ3]�-theory: Worldline formulation

Let us begin with the worldline formulation of the non-
commutative λ[Φ3]�-theory. As stated in the Introduc-
tion, we are motivated to do so for a detailed comparison
with parallel computatons in the open string theory in
the Seiberg–Witten limit. Moreover, the worldline formu-
lation applied to non-commutative field theories, by itself,
is of some interest1.

2.1 The effective action at one-loop

The classical action of the theory is given, after a Wick
rotation to Euclidean space, by

SNC =
∫
ddx

(
1
2
(∂Φ)2 +

1
2
m2Φ2 +

λ

3!
Φ � Φ � Φ

)
,

or, after a Fourier transform, by

SNC =
∫

ddk
(2π)d

1
2
Φ̃(−k)(k2 +m2)Φ̃(k)

+
λ

3!

∫ 3∏
a=1

ddka
(2π)d

Φ̃(ka)e−(i/2)
∑

i<j ki∧kj

× (2π)dδ

(
3∑
i=1

ki

)
.

The effective action is evaluated most conveniently by uti-
lizing the background field method: split the scalar field Φ̃
into Φ̃ = Φ̃0 + ϕ̃, where Φ̃0 and ϕ̃ denote classical (back-
ground) and quantum (internal) fields, respectively. To
one-loop order, only the terms quadratic in ϕ̃ are relevant.
Explicitly, we have

SNC =
∫
ddk1

(2π)d
ddk2

(2π)d

[
(2π)dδd(k1 + k2)

1
2
(
k2
1 +m

2)
+
λ

2

∫
ddk3

(2π)d
(2π)dδd(k1 + k2 + k3)

× e−(i/2)
∑3

i<j ki∧kj Φ̃0(k3)

]
ϕ̃(k1)ϕ̃(k2) + · · · (2.1)

This shows that, compared to commutative λ[Φ3]-theory,
interaction vertices are modified by Moyal’s phase factor.

1 Computations below follow closely the worldline formula-
tion of commutative field theories [7]



Y. Kiem et al.: Anatomy of one-loop effective action in non-commutative scalar field theories 759

These phase factors let the scalar fields be non-commuta-
tive while retaining associativity. We can view the scalar
fields effectively as matrix-valued fields, whose precise na-
ture is dictated by the so-called Weyl–Moyal correspon-
dence map. Accordingly, the correspondence allows us to
classify Feynman diagrams in λ[Φ3]�-theory into the pla-
nar and the non-planar ones [8–10]. After symmetrization
over the momentum labelling, (2.1) is re-expressible in a
form suited for dealing with the planar and non-planar
diagrams:

SNC =
∫
ddk1

(2π)d
ddk2

(2π)d
(2π)d

[
1
2
(k2

1 +m
2)δd(k1 + k2)

+
λ

4

∫
ddp
(2π)d

δd(k1 + k2 + p) (2.2)

× (e(i/2)p∧k1 + e−(i/2)p∧k1)Φ̃0(p)

]
ϕ̃(k1)ϕ̃(k2) + · · ·

Integrating out the quantum fluctuation field ϕ̃, the one-
loop effective action is given schematically by

Γ1−loop[Φ0] = � lnDet−1/2

[ (
k2 +m2) (2.3)

+
λ

2

∫
ddp
(2π)d

(
e(i/2)p∧k + e−(i/2)p∧k

)
Φ̃0(p)

]
.

Compared to the one-loop effective action of the commu-
tative λ[Φ3]-theory,

Γ1−loop[Φ0] = � lnDet−1/2

×
[(
k2 +m2)+ λ ∫ ddp

(2π)d
Φ̃0(p)

]
,

the interaction vertex is modified by non-commutativity
in two ways. First, the coupling parameter is reduced ef-
fectively by a factor of 2. Its combinatorial origin is as
follows: the entire 3! diagrams can be grouped into two
sets of 3 diagrams, related to one another by cyclic per-
mutations. Due to Moyal’s phase factors, they constitute
inequivalent diagrams. We will refer to the two respective
types of interaction vertices in (2.3) as P and T , respec-
tively. Second, the relative sign between P and T terms
is positive. Recall that, for the vector particles as in non-
commutative gauge theories, the sign is negative. In fact,
these signs are attributed to even/odd parity under the
worldline time-reversal τ → (1− τ).
For the worldline formulation, we begin with re-

expressing the one-loop effective action (2.3) in the path
integral representation. In doing so, because of the non-
commutativity in P and T , we will need to take care of
operator ordering. We thus start with

− lnDetF(k) =
∞∫
0

dT
T

∫
x(T )=x(0)

Dx(τ)
∫

k(T )=k(0)

Dk(τ)

×Pτ exp
−

T∫
0

[F(k(τ))−ik(τ) · ẋ(τ)] dτ
 .

In theories with non-derivative interactions, such as com-
mutative λ[Φ3]-theory, the function F(k) is typically
quadratic in k, and hence integration over k(τ) first would
be straightforward. In the present case, due to the k-
dependent Moyal phase factors in P and T , we proceed
differently and expand the background Φ0 first. The one-
loop effective action then comprises terms involving vari-
ous powers of the P and T , in which P → T is made by the
insertion of “twist” to adjacent internal lines. Explicitly,

Γ1−loop[Φ0] =
�

2

∞∫
0

dT
T

∫ ∫
DxDk

× exp
−

T∫
0

dτ(k2 +m2 − ik · ẋ)


×
∞∑
N=0

N∑
n=0

(
−λ
2

)N  n∏
�=1

τ�+1∫
0

dτ�
∫
ddp�
(2π)d

Φ̃0(p�)


× exp

(
+
i
2

n∑
�=1

p� ∧ k(τ�)
)

×

N−n∏
j=1

τ ′
j+1∫
0

dτ ′
j

∫ ddp′
j

(2π)d
Φ̃0(p′

j)


× exp

− i
2

N−n∑
j=1

p′
j ∧ k(τ ′

j)

 . (2.4)

of n and (N −n) interaction vertices with(out) twists, re-
spectively; see Fig. 2. For each group of vertices, moduli
parameters are labeled as τ� and τ ′

j (τn+1 = τ ′
N−n+1 = T ),

and external momenta are labeled as p� and p′
j , respec-

tively. We also assign a sign factor νl = +1,−1 to these
two groups of interaction vertices. The two square brack-
ets in (2.4) are untwisted and twisted interaction vertices,
respectively. Therefore, for given n and N , the one-loop
diagram is a function of the following set of momenta and
moduli parameters:

{τi} = {τ(l) for i = 1, 2, · · · , n ;
τ ′
(j) for i = n+ 1, · · · , N}

{pi} = {p(l) for i = 1, 2, · · · , n ;
p′
(j) for i = n+ 1, · · · , N}.

The N -point, one-particle-irreducible (1PI), Green
functions are obtained by expanding the effective action
(2.4) in powers of Φ0. In the commutative setup, they are
calculated by substituting the classical background field
into a sum of “plane waves”:

Φ̃0(x(τ)) −→
N∑
�=1

eip�·x(τ). (2.5)

This substitution is still valid for the present case, as the
products between Φ̃0’s in (2.4) in the momentum repre-
sentation are local products (with explicit Moyal’s phase
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Fig. 2. One-loop N -point Green function. Interaction ver-
tices of untwisted and twisted types are marked with solid
and dashed circles, whose momenta are labelled p1, · · · , p� and
p′
1, · · · , p′

N−n

factors attached). By making the plane-wave substitution
(2.5), we now generate all the possible diagrams automat-
ically (discarding terms containing the same momentum).
This leads, for given n and N , the moduli integrals in (2.4)
to result in n∏

�=1

τ�+1∫
0

dτ�Φ̃0 (p�)

 ·

N−n∏
j=1

τ ′
j+1∫
0

dτ ′
jΦ̃0

(
p′
j

) (2.6)

−→
n∏
�=1

τ�+1∫
0

dτ�
N−n∏
j=1

τ ′
j+1∫
0

dτ ′
j

×
[
eip1x(τ1)eip2x(τ2) · · · eipNx(τN ) + (all permutations)

]
.

By interchanging the moduli variables τ , all permutation
terms in (2.6) can be arranged so as all possible ordered
integrals to have the same integrand. We find that the
right-hand side of (2.6) involves the moduli-space inte-
grals:

∑
{νi}

T∫
0

dτN · · ·
T∫

0

dτ1
N∏
�=1

eip�x(τ�)

=
∑
{νi}

T

N

T∫
0

dτN−1 · · ·
T∫

0

dτ1
N∏
�=1

eip�x(τ�).

This is essentially the N -point correlator (evaluated with
an appropriate worldline Green function). The combina-
torics work as follows. The sum over {νi} takes into ac-
count of all possible 2N terms, viz. the binomial expan-
sion of (P +T )N interaction vertices. In the commutative
limit, all the 2N terms reduce to the same contribution,
and eventually cancel the (1/2)N factor originating from
the rescaling of the coupling parameter, λ → λ/2. Alterna-
tively, as the second expression in the above moduli-space

integral shows, the sum over {νi} takes into account all
possible 2N -terms: 2N possibilities for the Nth reference
interaction vertex, and 2N−1 combinatorial possibilities
for the rest. The factor of N is cancelled by the symmetry
factor for the reference vertex, 1/N . The net result is 2N ,
yielding the same combinatorial counting.
Consequently, at one loop, the N -point Green function

(corresponding to (2.4)) is given by

ΓN [p1, · · · , pN ]

=
�

2

(
−λ
2

)N ∑
{νi}

∞∫
0

dT/T

T∫
0

· · ·
T∫

0

N∏
�=1

dτ�

×
∫

Dx
∫

Dke−
T∫

0
dτ[k2+m2−ik·ẋ]

×
N∏
j=1

eipj ·x(τj)e(i/2)νjpj∧k(τj). (2.7)

A brief comment is in order. In the above derivation, for
simplicity, we have utilized the plane-wave basis. As will
be shown shortly, the phase factor exp [(i/2)νjpj ∧ k(τj)]
ought to be understood as part of a generalized vertex op-
erator, viz. the plane-wave (scalar) vertex operator∫
dτ�eip�·x(τ�) is not the proper one in non-commutative

field theories. In fact, we will show that the standard
Feynman diagrammatics results in Appendix A are repro-
ducible precisely in terms of these new vertex operators.

2.2 The N -point Green function

We next evaluate the path integral in (2.7) explicitly and
derive a parametric expression for the one-loop, N -point
Green function. In this section, we will prove that the
result is given by

ΓN [p1, · · · , pN ]

=
�

2

(
−λ
2

)N ∑
{νi}

∞∫
0

dT
T
e−m

2T

(
1
4πT

)d/2

×
T∫

0

N∏
�=1

dτ�
N∏
i<j

e(i/2)νijε(τij)pi∧pj

× exp
1
2

N∑
k,�=1

pk · GBθ(τk, τ�; εk, ε�) · p�
 , (2.8)

where GabBθ denotes the non-commutative counterpart of
the worldline propagator GB :

GabBθ (τk, τ�; εk, ε�) = gabGB(τk, τ�)− i
T
θabεk�(τk + τ�)

+
1
4T
(−θ2)abε2k�. (2.9)

We have introduced the following notation:

νij :=
νi + νj
2

, τij := τi − τj , εi :=
1− νi
2

,
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and ε(τ) := sign(τ).

In addition, εk� refers to εk� = εk−ε�. In the present case,
as (2.4) indicates, the untwisted and the twisted vertices
ought to be distinguished from each other, as the exponent
of the �-product flips sign, depending on whether the ver-
tex is twisted or not (cf. (2.3)). One recognizes also that
the �-product structure is dressed with a twist-dependent
“weight”:

eipix(τi) ∗ν eipjx(τj)

= exp
(
i
2
νijε(τij)pi ∧ pj

)
eipix(τi)+ipjx(τj),

where νij = 0,+1,−1 depending on the types of bound-
aries along which the interaction vertices are inserted.
In the rest of this subsection, we prove (2.8) and (2.9).

Start with the path integral over k(τ). The relevant inte-
gral is

K :=
∫

Dk exp
(

−
T∫

0

dτ

[
k2(τ)− ik · ẋ(τ)

+
i
2

N∑
�=1

ν�δ(τ − τ�)k(τ) ∧ p�
])

,

a Gaussian type integral. After shifting the momentum
density by

ka(τ) −→ ka(τ) +
i
2
ẋa(τ)− i

4

N∑
�=1

δ(τ − τ�)ν�θabpb�,

the integral yields

K=N (T ) exp
−1
4

T∫
0

dτ

[
ẋ− 1

2

N∑
�=1

θ · p�ν�δ(τ − τ�)

]2
 ,

where N (T ) is a T -dependent normalization factor, which
turns out to be the same as in the commutative case. The
square of the δ-functions in the exponent does not lead to
divergences, as all τ� take different values because of the
non-commutativity. Thus, one finally finds

K = N (T ) exp
−1

4

T∫
0

ẋ2dτ

 N∏
�=1

exp
(
1
4
ν�ẋ(τ�) ∧ p�

)
.

Utilizing the expression for K, the N -point correlation
function is then reduced to

ΓN [p1, · · · , pN ]

=
1
2

(
−λ
2

)N ∑
{νi}

∫ ∞

0

dT
T
e−m

2T

T∫
0

N∏
�=1

dτ�

×N (T )
∫

x(0)=x(T )

Dx exp
−1

4

T∫
0

ẋ2dτ


×
N∏
�=1

eip�x(τ�)e(1/4)ẋ(τ�)∧p�ν� . (2.10)

Next, evaluate the path integral over x(τ):

X :=
∫

x(0)=x(T )

Dxe−(1/4)
T∫

0
ẋ2dτ

×
N∏
�=1

exp
(
ip� · x(τ�)− ν�

4
p� ∧ ẋ(τ�)

)
.

The integrand suggests that the vertex operator relevant
for the non-commutative scalar field is not the conven-
tional plane-wave vertex operator but, as mentioned ear-
lier,

VNC(x) :=
∫ T

0
dτ exp

(
ip · x(τ)− ν

4
p ∧ ẋ(τ)

)
.

The integral X is evaluated as follows. First, decompose
the x(τ) field into normal modes:

xµ(τ) = xµ0 +
∞∑
n=1

xµn sin
(nπτ
T

)
.

The integral over the zero-mode x0 enforces total energy-
momentum conservation. The rest yields

X =

∞∫
−∞

∞∏
n=1

dxn exp

[
− π2

8T
n2x2

n + i
N∑
�=1

p�xn sin
(nπτ�

T

)

− 1
4

N∑
�=1

p� ∧ xnν�nπ
T
cos

(nπτ�
T

)]
.

The xn integrations are of Gaussian type. Completing the
exponent into squares and fixing the normalization as in
the commutative case, we obtain

X =
(
1
4πT

)d/2 ∞∏
n=1

exp

[
2T
n2π2

(
i
N∑
�=1

p� sin
(nπτ�

T

)

+
1
4

N∑
�=1

θ · p�ν�nπ
T
cos

(nπτ�
T

))2 ]
.

Applying the identities

sin
(nπτi

T

)
sin

(nπτj
T

)
=
1
2

(
cos

nπ(τi − τj)
T

− cos nπ(τi + τj)
T

)
, etc.

and

∞∑
n=1

cosnx
n2 =

1
4
(|x| − π)2 − π2

12
,

∞∑
n=1

cosn(x− a) = πδ(x− a)− 1
2
,



762 Y. Kiem et al.: Anatomy of one-loop effective action in non-commutative scalar field theories

we obtain

X =
(
1
4
πT

)d/2
exp

−T
4

N∑
i,j=1

pi · pj

×
{(
1− |τi − τj |

T

)2

−
(
1− τi + τj

T

)2
}

+
i
8

N∑
i,j=1

pi ∧ pjνjT ∂

∂τj

{(
1− |τi − τj |

T

)2

−
(
1− τi + τj

T

)2
}

− 1
4T

N∑
i,j=1

pi ◦ pjεiεj
 , (2.11)

where δ(τi ± τj) = 0 is used again. The differentiation
with respect to τj in the second line of (2.11) produces
both the Filk phase factor and the terms linear in the τ ,
which will be shown to yield precisely the generalized �-
products. Making use of the identities derived from the
energy-momentum conservation,

N∑
i,j=1

pi ∧ pjνjτi =
N∑
i,j=1

pi ∧ pjεij(τi + τj),

N∑
i,j=1

pi ◦ pjεiεj = −1
2

N∑
i,j=1

ε2ijpi ◦ pj ,

we were able to arrange the X-integral as

X =
(
1
4πT

)d/2
exp

 i
2

N∑
i<j

pi ∧ pjνijε(τij)


× exp

1
2

N∑
i,j=1

pi · pjGB(τi, τj)

− i
2T

N∑
i,j=1

pi ∧ pjεij(τi + τj) + 1
8T

N∑
i,j=1

ε2ijpi ◦ pj
 .

Putting the above result into (2.10), we finally obtain the
aforementioned expression, (2.8), for the N -point Green
functions at one-loop order.
The N -point Green functions, (2.8), can also be ob-

tained from rearranging the standard Feynman diagram-
matics. This is elaborated in Appendix A. In comparing
the two results, one should exercise caution that, upon
reversing the orientation of the underlying string world-
sheet, one also flips the overall sign of the phase factor in
(2.8). In fact, the overall sign choice is fixed only after the
orientation convention is chosen.

3 Comparison
with string worldsheet computation

Having found the N -point Green functions in the world-
line formalism, we now compare (2.8) and (2.9) with those

1

2

3

n

N 

n+1

n+2

n+3

x=1/2x=0

t

Fig. 3. Annulus as one-loop string worldsheet diagram.
Tachyon vertex operators are inserted on either boundary of
the annulus. In the Seiberg–Witten limit, the annulus size mod-
ulus t is scaled to infinity

obtained from the string theory computation [13]. At one
loop, the relevant string worldsheet diagram is an annulus
with two boundaries. We will parameterize the worldsheet
by a complex coordinate, z = x + iy, where y is periodi-
cally identified as y � y + t and the two boundaries are
located at x = 0 (ε = 1 and ν = −1, the inner boundary)
and x = 1/2 (ε = 0 and ν = 1, the outer boundary), re-
spectively. Here t is the annulus modulus. External open
strings can be inserted along either of the two boundaries,
a direct counterpart of the twisted and untwisted interac-
tion insertions in one-loop Feynman diagrammatics.
As we want to extract information concerning non-

commutative scalar field theories, the relevant external
string states are those of tachyons, whose vertex operator
is given by

VT (p, y) = gs
√
α′eip·X(y),

and we turn on the constant background two-form gauge
fields, which turn themselves into the non-commutativity
parameter θ in the Seiberg–Witten limit. The relevant N -
point tachyon S-matrix amplitude, which is depicted in
Fig. 3, is schematically expressible by (up to normaliza-
tion)

A =
∫ ∞

0

dt
t
Z(t)

∫ t
0
dy1 · · ·

∫ t
0
dyN

× 〈VT1(p1, y1) · · ·VTN (pN , yN )〉t
= (g2

sα
′)N/2

∫ ∞

0

dt
t
Z(t)

∫ t
0
dy1 · · ·

∫ t
0
dyN

× exp

−α′
N∑
i<j

piGijpj
 ,

in terms of the worldsheet partition function Z(t) and the
worldsheet Green function Gij . In the case of the annu-
lus partition function, the non-zero two-form Bmn back-
ground does not change the worldsheet Green function,
except that the metric is replaced, in the Seiberg–Witten
limit, by the open string metric Gab:

Z(t) =
∫

ddk
(2π)d

∑
{I}
e−2πα′t(k·G·k+M2

I )

=
(

1
2πα′t

)d/2
f1(q)−24,
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where the summation {I} is over the entire string states
in the intermediate channel, and

f1(q) = q1/24
∞∏
m=1

(1− qm), where q = e−2πt,

as are relevant for the bosonic D(d−1)-branes.
The boundary worldsheet propagator has the following

form [14]: for two points on the same boundary, relevant
for the planar diagram contributions,

Gabp (zi, zj) = α′GabG(zi, zj) + i
2
θabε(zi − zj), (3.1)

while for two points on different boundaries, relevant for
the non-planar diagram contributions,

Gabnp(zi, zj) = α′GabG(zi, zj) + (θ ·G · θ)ab
2πα′t

(xi − xj)2

− 2i
t
θab(xi − xj)(yi + yj). (3.2)

Here, the function G(zi, zj) is defined by

G(zi, zj) = − log
∣∣∣∣ϑ1(zi − zj |it)

ϑ′
1(0|it)

∣∣∣∣2 + 2πt (yi − yj)2,

in terms of the theta function ϑ1.
To extract the non-commutative scalar field theory

amplitudes from the open string tachyon S-matrix ampli-
tudes, we will take the Seiberg–Witten decoupling limit
α′ → 0 under which the massive string modes decouple,
while the open string metric Gab and non-commutativity
θab are held fixed. In fact, technically speaking, what we
really do here is to isolate the loop contribution from the
tachyon intermediate state. This contribution is exponen-
tially divergent and dominates contributions from higher
mass intermediate states. We then analytically continue
the mass parameterm2 to a proper positive value to match
our cubic field theory mass parameter. In this process, we
also keep the field theory moduli parameters T and τ fixed
by putting

2πα′t = T and 2πα′y = τ,

viz. the annulus becomes infinitely thin, making essen-
tially a circle, relevant for a one-loop Feynman diagram.
Through this procedure, one finds that the partition func-
tion Z(t) turns into

Z(t)→
(
1
T

)d/2
e−m

2T ,

matching the corresponding factor in the field theory re-
sult, (2.8).
The two-point function G in the decoupling limit is

reduced to (see for instance [15])

−α′G(zi, zj) −→ GB = |τi − τj | − (τi − τj)2

T
,

viz. only the zero-mode part of ϑ1 remains. Also, noting
that (xi − xj) = −εij/2 vanishes when the ith and jth
insertions are on the same boundary, the last two terms
in the non-planar propagator (3.2) are reduced to the last
two terms in (2.9). Likewise, the second term in the pla-
nar propagator (3.1) gives rise to the Filk phase factors,
as, when the ith and jth insertions are along the same
boundary, ε(zi − zj) = ε(τij) at x = 0 (ν = −1) and
ε(zi − zj) = −ε(τij) at x = 1/2 (ν = 1). Putting these
observations together, we conclude that (2.8) and (2.9)
follow precisely from the string theory computation in the
Seiberg–Witten limit.
The expression (2.8) is the general one for a given value

of N , the total number of external scalar insertions; the
sum over {νi} is over 2N possible terms, spanning the
cases of inner or outer boundary insertion for each inter-
action vertex. Decomposing N = N1 + N2 where N1 is
the number of inner boundary insertions and N2 is the
number of outer boundary insertions, the terms of (2.8)
can be classified into planar and non-planar contributions,
depending on the value of N1: two terms, N1 = 0 or N ,
are planar diagrams, while 0 < N1 < N are non-planar di-
agrams (consisting of N !/(N1!N2!) symmetrization of the
external momenta). The non-planar diagrams correspond
to the double trace terms

TrΦ(p1) · · ·Φ(pN1)︸ ︷︷ ︸
N1

TrΦ(pN1+1) · · ·Φ(pN )︸ ︷︷ ︸
N2

.

For fixed N1, let us denote the net momentum flow be-
tween the inner and the outer boundaries

P =
N∑
i=1

εipi =
N1∑
r=1

pr. (3.3)

From here on, the indices r, s, · · · run from 1 to N1 (inner
insertions) while the indices m,n, · · · run from 0 to N2
(outer insertions). Using the overall momentum conserva-
tion, we find that the contribution to the amplitudes from
the third term of (2.9) can be written as

exp
(

−P ◦ P
4T

)
.

Another useful identity that can also be proved using mo-
mentum conservation is

1
2

N∑
i,j=1

pi ∧ pjεij(τi + τj) = 1
2

N∑
i<j

pi ∧ pj(νi + νj)τij .

The quantity (νi+ νj)/2 equals +1 when i and j are both
outer insertions, −1 when they are both inner insertions,
and 0 otherwise. Thus, for fixed N1, each term in (2.8)
can be expressed by

ΓN,{νj} =
�

2

(
−λ
2

)N ∫ ∞

0

dT
T

(
1
4πT

)d/2
×TN1+N2 exp

[
−m2T − P ◦ P

4T

]
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×
 N1∏
r=1

1∫
0

dτr


× exp

(
− i
2

∑
r<s

pr ∧ psε(τrs) + ipr ∧ psτrs
)

×
 N2∏
a=1

1∫
0

dτa

 (3.4)

× exp
(
+
i
2

∑
a<b

pa ∧ pbε(τab)− ipa ∧ pbτab
)

× exp
T ∑

i<j

piaG
abpjb

(|τi − τj | − (τi − τj)2
) ,

where we have rescaled the τ by T so that they take val-
ues in the interval [0, 1]. The amplitude expression (3.4)
is essentially identical to the four point amplitudes (N1 +
N2 = 4) obtained in [16] in the case of the N = 4 non-
commutative U(1) gauge theory up to a number of de-
tails. First, the polarization dependence of the gauge fields
is deleted in the scalar field theory case. Secondly, the
(−1)N1 factor is absent reflecting the difference in the par-
ity under τ → −τ between the tachyon vertex operator
(with even worldsheet oscillation number) and the gauge
vertex operator (with odd worldsheet oscillation number).
Third, while we had to rely on the analytic continuation
to make the m value an appropriate number for the scalar
theory, one can rely on the Higgs mechanism, i.e., the sep-
aration r between two parallel D-branes, to produce the
mass m = r/(2πα′) for the gauge theories. One further
notes that the summation over N !/(N1!N2!) terms fully
symmetrizes the external momenta for each non-planar
amplitude, in line with the symmetric trace prescription
in non-abelian Born–Infeld theory.
To get further insight into the amplitude (3.4), we now

expand the last line in (3.4) in the low-energy limit:

piaG
abpjb � m2 for every i, j.

In this limit, being subdominant compared to the first
line, the last line in (3.4) simply drops out. The leading
term in this expansion exhibits the factorization property
[17] manifestly:

ΓN,{νj} =
�

2

(
−λ
2

)N ∫ ∞

0

dT
T

(
1
4πT

)d/2
×TN1+N2 exp

[
−m2T − P ◦ P

4T

]

×
 N1∏
r=1

1∫
0

dτr


× exp

(
− i
2

∑
r<s

pr ∧ psε(τrs) + ipr ∧ psτrs
)

×
 N2∏
a=1

1∫
0

dτa

 (3.5)

× exp
(
+
i
2

∑
a<b

pa ∧ pbε(τab)− ipa ∧ pbτab
)
.

The effective action is then obtained by computing the
moduli parameter integrals explicitly and then summing
over ΓN,{νj} along with the combinatorial weight 1/N !,
as explained above (2.7). We elaborate the details in the
next section.

4 Effective action, �n-products
and open Wilson lines

Now we begin with the evaluation of the moduli parameter
integrals of the factorized low-energy expression, (3.5). As
elaborated in the previous section, by rescaling the vertex
position moduli τ ’s by T · τ , the moduli integrals in T ,
τr, τa are also factorized. Thus, we evaluate first the T -
modulus integral. Recall that the T -modulus corresponds,
in the open string worldsheet computation, to the modulus
of an annulus diagram. One readily obtains

KN (P,Λ; d) := 2N
∞∫
0

dT
T

(
1
4
πT

)d/2

× TN exp
[
−m2T − P ◦ P + Λ−2

4T

]
= 2

(
1
2π

)d/2 (
P ◦ P + Λ−2

m2

)(N/2)−(d/4)

× KN−(d/2)

(
m|P ◦ P + Λ−2|1/2

)
, (4.1)

where we have introduced the UV cutoff Λ explicitly, and
the dependence on P,Λ, and the spacetime dimension d
are emphasized. The function K−(d/2)+N (z) refers to the
modified Bessel function. For the planar diagrams, in-
ferred from (3.3), P = 0 and hence the UV cutoff Λ is
indispensable.
Next, evaluate the moduli integrals in the second and

the third lines in (3.5). These integrals turn out to be
identical to the definition of generalized �N -products, as
defined, for instance, in [12]. Note that we have decom-
posed the N -point interaction vertices into N1 untwisted
ones and N2 twisted ones, where N = N1 + N2. In the
string worldsheet computation, the former type of inser-
tions corresponds to the “outer” boundary insertions, and
the latter to the “inner” boundary insertions. One readily
finds that each group of the insertions yields a cluster of
generalized �-products. The T -integral, KN (P,Λ; d), then
supplies a sort of “propagator”, connecting the two clus-
ters of generalized �-products; see Fig. 1.
As emphasized already, the generalized �-product

arises when there exists a net momentum flow between
the two clusters of external lines, viz. between untwisted
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and twisted interaction vertices. As denoted in (3.3), the
net momentum flow P is given by

P + p1 + · · ·+ pN2 = 0.

Making use of the identity

N2∑
a<b=1

pa ∧ pb(τa − τb) =
N2∑
a=1

P ∧ paτa,

we can re-express the third line of (3.5) by N2∏
a=1

1∫
0

dτa

 exp N2∑
a<b=1

(
i
2
ε(τab)pa ∧ pb − iτabpa ∧ pb

)

=

 N2∏
a=1

1∫
0

dτa

 exp N2∑
a<b=1

(
i
2
ε(τab)pa ∧ pb

)

× exp
(

−i
∑
a

P ∧ paτa
)
. (4.2)

As expressed, the moduli integrals over the τ are un-
ordered and range over the entire circle [0, 1]. One can
decompose these integrals into N2! ordered integrals, each
of which is defined with a definite ordering among the N2
τa moduli parameters. For each ordering, the first expo-
nential in (4.2) gives rise to Filk’s phase factor, which, in
the absence of the second exponential, simply yields the
standard �-product. In the case of the planar contribution,
P = 0 and the relevant product is the symmetrized form
of the standard �-product:

[A1A2 · · ·AN ]�sym
:=

1
N !

∑
{perm}

Ai1 � · · · � AiN ,

where the summation is over N ! permutations. In the case
of the non-planar contributions, however, because of the
non-vanishing momentum flow P , the relevant product
turns out to be the generalized �N -product2.
The explicit evaluation of (4.2), including the non-

abelian Chan–Paton factor, was made in [17]. The results
are

Tr [f1(p1), f2(p2), · · · fN2(pN2)]�N2

=
∑

(N2−1)!

fa11 (p1) · · · faN2
N2

(pN2)Tr (T
a1 · · ·T aN2 )

×


exp

 i
2

N2∑
i<j

pi ∧ pj


∏N2
i=2 (−ik ∧ Pi)

+ (cyclic permutations)

 ,

2 The relevance of generalized �-products and the relation to
gauge invariance and the Seiberg–Witten map have recently
been studied [18], but all in the context of non-commutative
gauge theories

where the summation runs over the (N2 − 1)! non-cyclic
permutations (with independent Chan–Paton factor), fi =∑
ai
fai
i T

ai , T ai are generators of the U(n) Chan–Paton
group, and Pi :=

∑N
j=i pj . For U(1) gauge group, they

reduce to

[f1(p1), f2(p2), · · · fN2(pN2)]�N2

=
∑

(N2−1)!

f1(p1) · · · fN2(pN2)

×


exp

 i
2

N2∑
i<j

pi ∧ pj


∏N2
i=2 (−ik ∧ Pi)

+ (cyclic permutations)

 .

One can explicitly work all these out and find that they
are given by

[A(x1)B(x2)]�2 :=
sin

(
1
2
∂1 ∧ ∂2

)
1
2
∂1 ∧ ∂2

A(x1)B(x2),

[A(x1)B(x2)C(x3)]�3 (4.3)

:=

 sin
(
1
2
∂2 ∧ ∂3

)
1
2
(∂1 + ∂2) ∧ ∂3

sin
(
1
2
∂1 ∧ (∂2 + ∂3)

)
1
2
∂1 ∧ (∂2 + ∂3)

+ (1↔ 2)


×A(x1)B(x2)C(x3),

and so forth. Evidently, as the k subset of the momenta
go to zero, �N is reduced to �N−k.
Combining (4.1) and (4.3), (3.5) can be rewritten

ΓN,{νj} =
�

2

(
−λ
4

)N1+N2

[Φ · · ·Φ]�N1
(−P )

×K̃N−d/2
(
P ◦ P + 1/Λ2) [Φ · · ·Φ]�N2

(+P ), (4.4)

where the kernel Kn is given, from (4.1), by

K̃n(z2) = 2
(
1
2π

)d/2 ( |z|
m

)n
Kn (m|z|) .

In (4.4), we have retained the UV cutoff Λ, as the result
is equally valid for planar contributions in so far as P is
set to zero and the generalized �-products are replaced by
the standard �-products.
As is clear from the defintion in (4.3), the general-

ized star products are symmetric with respect to the ex-
ternal momenta. Hence, each summand in the 2N1+N2-
summations over {νj} yield the same contribution as long
as N1 (thus N2) is the same; this gives rise to the com-
binatorial factor N !/(N1!N2!). Recalling the definition of
the effective action in our convention with the 1/N ! factor,
we finally obtain the one-loop effective action:

Γ [Φ] =
�

2

∞∑
N=1

(
−λ
4

)N 1
N !

∫
ddx

N∑
N1=0

N !
N1!(N −N1)!
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  P  =  0 P  =  0

x∆

Fig. 4. Spacetime snapshot of planar and non-planar contri-
butions. The partial momentum sum of the (un)twisted inter-
action vertices is denoted P . For P = 0, viz. the planar contri-
bution, the virtual quanta sweep a closed path in spacetime.
When P �= 0, viz. the non-planar contribution, the virtual
quanta jump ∆x in spacetime

× [Φ · · ·Φ]�N1
(x)K̃N−d/2(−∂x ◦ ∂x + Λ−2)

× [Φ · · ·Φ]�N−N1
(x),

encompassing both planar (N1 = 0 or N) and non-planar
contributions. As we will see below, the planar contribu-
tion is the counterpart of the closed Wilson loop one-point
function, viz. a counterpart of the closed string tadpole,
while the non-planar contribution is the counterpart of the
open Wilson line two-point functions; see Fig. 4.

4.1 Planar contribution

We first consider the planar contribution N1 = 0 or N in
the limit where the momentum cutoff is much larger than
the mass scale m, Λ � m. From the Taylor expansion
of the modified Bessel function, we obtain the following
expressions for the kernel:

Kn(z2) = 2
(
1
2π

)d/2 ( |z|
m

)n
Γ (|n|)
2

(
2

m|z|
)|n|

for n �= 0 and

K0(z2) = 2
(
1
2π

)d/2 (
− log m|z|

2

)
for n = 0 and n = N − d/2. Here, z = 1/Λ, and, as
explained above, the generalized star products should be
understood as the standard star products:

[Φ, · · · , Φ]�N1
(x) [Φ, · · · , Φ]�N−N1

(x) = [Φ � · · · � Φ] (x),

viz. an N -tuple of standard �-products, etc. Details of the
UV divergence depend on the spacetime dimension d. For
instance, in d = 6, where the theory is renormalizable,
the two-point Green function (N = 2) is quadratically
divergent, and the three-point Green function (N = 3) is
logarithmically divergent. The higher-point functions (n >
0) are finite, as the dependence on the UV cutoff Λ cancels
out. One furthermore observes that, after renormalization
of the divergent contributions, the combinatorial factors

turn out to be

(N− 4)!
N !

=
1

N(N − 1)(N − 2)(N − 3)
= −1

6

(
1
N

− 3
N − 1 +

3
N − 2 − 1

N − 3
)
.

Thus, the planar contribution to the effective action is
given by

Γp � �

(
m2 +

λ

2
Φ

)3

�

� log�

(
m2 +

λ

2
Φ

)
. (4.5)

The result (4.5) is precisely the non-commutative version
of the “Coleman–Weinberg”-type potential, where the pa-
rameters and the fields are to be understood as renormal-
ized ones.
The planar contribution ought to correspond, in string

theory, to the diagrams with a tadpole insertion [19]. This
is evidently so, except for one puzzling point: in the large
non-commutativity limit, the Weyl–Moyal correspondence
permits one to map the non-commutative λ[Φ3]�-theory
into the large-N limit of the U(N) matrix λTr[Φ]3-theory.
One would have expected that the dominant dynamics is
describable in terms of the standard Wilson loop operators

W0[Φ] :=
∫
d4x exp� (−λΦ(x)) ,

where the integration is over the non-commutative di-
rections. Typically, these Wilson loops are the large-N
limit “master” fields in matrix-valued field theories. Ap-
parently, the result, (4.5), does not involve the above Wil-
son loops, even after taking the large non-commutativity
limit. Whether this discrepancy invalidates the concept of
the master field in this context or not is unclear yet.

4.2 Non-planar contribution

The behavior of the non-planar contribution is markedly
different from those of the planar part, especially as we
take the large non-commutativity limit. From here on, we
will drop the cutoff by sending it to infinity and Wick ro-
tate back to the Minkowski space. The non-planar part of
the effective action then becomes a double sum involving
generalized �-products:

Γnp =
�

2

∞∑
N=2

(
−λ
4

)N 1
N !

∫
ddx

N−1∑
n=1

(
N

n

)
[Φ · · ·Φ]�n(x)

× KN−(d/2) (−∂x ◦ ∂x) [Φ · · ·Φ]�N−n
(x).

To proceed, we will be taking the low-energy, large non-
commutativity limit:

q� ∼ ε, Pfθ ∼ 1
ε2

as ε → 0, (4.6)

so that

q� · qm ∼ O(ε+2)→ 0, q� ∧ qm → O(1),
q� ◦ qm ∼ O(ε−2)→ ∞. (4.7)
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In this limit, the modified Bessel function Kn exhibits the
following asymptotic behavior:

Kn(mz)→
√

π

2mz
e−m|z|

[
1 +O

(
1

m|z|
)]

.

Most remarkably, the asymptotic behavior is independent
of the index n. Compared to the planar effective action,
there is not the extra n! factor that (partially) cancels
N ! in the denominator, which shows that the summed
form of the effective action markedly changes. In the low-
energy limit, the Fourier-transformed kernels K̃n obey the
following recursive relation:

K̃n+1 (k ◦ k) =
( |θ · k|

m

)
K̃n (k ◦ k) ,

viz.

K̃n (k ◦ k) =
( |θ · k|

m

)n
Q̃ (k ◦ k) .

Here, the kernel Q̃ is given by

Q̃ (k ◦ k) = (2π)(1−d)/2
∣∣∣∣ 1
mθ · k

∣∣∣∣1/2 exp(−m|θ · k|).

Note that, in the power-series expansion of the effective
action, a natural expansion parameter is |θ · k|.
Thus, the non-planar one-loop effective action in mo-

mentum space is expressible as

Γnp[Φ] =
�

2

∫
ddk
(2π)d

K̃−d/2 (k ◦ k)
∞∑
N=2

N−1∑
n=1

(
− λ

4m

)N
×

(
1
n!

|θ · k|n
[
Φ̃ · · · Φ̃

]
�n

[k]
)

×
(

1
(N − n)!

|θ · k|N−n
[
Φ̃ · · · Φ̃

]
�N−n

[−k]
)
. (4.8)

Utilizing the relation between the generalized �n prod-
ucts and the scalar open Wilson line operators, as elabo-
rated in [1], the non-planar one-loop effective action can
be summed up into a remarkably simple closed form. De-
note the rescaled coupling parameter by g := λ/4m (see
(1.2)). Then, because of the algebraic relation [Φ̃ �0 Φ̃]k =
(2π)dδ(d)(k), the domain of the double summations can be
extended to n = 0, N = 0 terms, as they yield an identi-
cally vanishing contribution after the k integration is per-
formed. Once this arrangement is made, partial summa-
tions over N and n can be performed explicitly. Exploiting
the exchange symmetry n ↔ (N − n), the summation do-
main (n,N) over the lower triangular lattice points can be
mapped to the one over the upper triangular lattice points.
By averaging over the two summation domains, one can
then rearrange the double summations into decoupled ones
over n and (N − n). One finally obtains

Γnp[Φ] =
�

2

∫
ddk
(2π)d

Wk[Φ] · K̃−d/2 (k ◦ k) ·W−k[Φ],

yielding precisely the aforementioned result, (1.1).

5 Conclusions and discussions

In this paper, we have studied the one-loop effective ac-
tion in the non-commutative λ[Φ3]�-theory. In order to
make a direct comparison with the Seiberg–Witten limit
of the open string worldsheet formulation, in computing
the one-particle irreducible one-loop Green functions, we
have adopted the worldline formulation of the theory. We
have observed that, at low energy, the one-loop diagrams,
both planar and non-planar, are completely factorizable.
We have shown explicitly that, while the planar contri-
bution is expressed in terms of the standard �-products,
the non-planar contribution is expressible solely in terms
of the generalized �-products. This implies that the struc-
ture of the one-loop effective action reveals quite differ-
ent physics between planar and non-planar contributions.
In particular, we were able to show that, in the large
non-commutativity limit, the non-planar contribution is
expressible in terms of open Wilson line operators, thus
completing the proof of our earlier result in [1]. The pla-
nar contribution, on the other hand, gives rise to a non-
commutative version of the Coleman–Weinberg-type po-
tential, in contrast to the anticipation that the planar part
ought to be expressible in terms of Wilson loop operators
– the putative master field in the planar limit of matrix-
valued field theories. The next obvious step is to extend
the computation to two loops and confirm that the two-
loop effective action is re-expressible in terms of (at most)
three open Wilson line operators. We will report the result
in a separate publication.
Our computation in the worldline formulation has shed

on several new points light concerning the spacetime in-
terpretation of the one-loop physics. Among them is the
shift of the momentum integration variable, as is evident
from the integration K in Sect. 2.2. It suggests that a vari-
ation of the internal momemtum ∆ka integrated along the
entire loop amounts to

∆

T∫
0

dτka(τ)

=
i
2

T∫
0

dτ

ẋa(τ)− 1
2

N∑
j=1

θabpbjνjδ(τ − τj)


=
i
2

N∑
j=1

θabpbjεj . (5.1)

Recalling εj take either the value 0 or 1, depending on
whether the jth vertex is an untwisted or twisted inser-
tion, we recognize that the above relation is precisely the
momentum-space counterpart of the dipole relation (1.3).
Recalling that ka(τ) is the conjugate momentum to xa(τ),
both of which are associated with the virtual quanta circu-
lating around the loop, the above relation asserts that the
virtual quanta is not a point-like constituent, obeying the
standard Fourier transformation relation between xa(τ)
and ka(τ), but behaves as a sort of rigid rod whose size
is proportional to the momentum. We trust details of this
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unusual physics – physics of dipoles – deserve further in-
vestigation and we intend to report on new understanding
of this aspect in separate publications.
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Appendix
A Schwinger parameterization
of one-loop Feynman diagram

In this section, we will provide a check point of the world-
line formulation introduced in Sect. 2 with the standard
Feynman diagrammatics. Although a general expression
for N -point, one-loop Feynman diagrams are given, for
instance, in [20,9], they are not in a convenient form for
comparison with the results in the worldline formulation,
mainly because of different moduli parameterizations and
the omission of overall normalization and combinatorial
factors (which are necessary for the resummation of the
N -point Green functions into the effective action). Let
us consider the N -point Feynman diagram (cf. Fig. 2),
wherein the non-planar phase factors eik∧p1 , ei(k+p1)∧p2 ,
ei(k+p1+p2)∧p3 , · · ·, eik∧pN are inserted at each of the N in-
teraction vertices, respectively, as well as the overall Filk
phase factor e−(i/2)

∑
i<j pi∧pj . The one-loop Feynman am-

plitude is given by

FN = e−(i/2)
∑

i<j pi∧pj

∫
ddk
(2π)d

(A.1)

× eik∧P ei
∑N−1

l=2
∑l−1

i=2 pi∧plεl

k2(k + p1)2(k + p1 + p2)2 · · · (k + p1 + p2 + · · · + pN−1)2
.

Here, the twist factor εi = 1 or 0; i = 1, · · · , N are in-
serted for the planar and the non-planar vertex insertions,
respectively, and

P a =
N∑
i=1

εip
a
i . (A.2)

We rewrite the momentum integral in terms of the overall
modulus integral (global Schwinger parameter T ≡ τN )
and (N −1) relative moduli integrals (local Schwinger pa-
rameters, τi):

FN =
N∏

i<j=1

e−(i/2)pi∧pj

N−1∏
k=2

k−1∏
�=2

eip�∧pkεk

∞∫
0

dT
(
1
4πT

)d/2

×
N−1∏
n=1

τn+1∫
0

dτn exp

 1
T

N−1∑
j=1

τjj+1

j∑
�=1

p� +
i
2
θ · P

2

−
N−1∑
j=1

τjj+1

(
j∑
�=1

p�

)2 , (A.3)

where τij = τi−τj . From energy-momentum conservation,
the following relations can be deduced:

P ◦ P = −
N∑
i<j

ε2ijpi ◦ pj ,

N−1∑
j=1

τjj+1

j∑
l=1

p� ∧ P =
N∑
i<j

(τi + τj)εjipi ∧ pj

= −
N∑
i<j

N∑
k=1,k 	=i,j

τkεjipi ∧ pj ,

1
T

N−1∑
j=1

τjj+1

j∑
�=1

p�

2

−
N−1∑
j=1

τjj+1

(
j∑
�=1

p�

)2

=
N∑
i<j

pi · GB(τj , τi) · pj ,

and
N∑
i<j

εijpi ∧ pj =
N∑
i<j

(νi − νj)pi ∧ pj =
N∑
i<j

τijpi ∧ pj = 0.

(A.4)

Utilizing the identity (A.4), the non-planar phase factor
can be simplified to

ei
∑N−1

l=2

∑l−1
i=2 pi∧plεl = ei

∑
i<j εipi∧pj ,

thus deriving

FN = e−(i/2)
∑

i<j νjpi∧pj

∞∫
0

dT
(
1
4πT

)d/2 N−1∏
n=1

τn+1∫
0

dτn

× exp

 N∑
i<j

pi · GBθ(τi, τj ; εi, εj) · pj
 . (A.5)

Using the above identities again, Filk’s overall phase factor
in (A.5) can be reduced to

− i
2

∑
i<j

pi ∧ pjνj = − i
2

∑
i<j

pi ∧ pj 12(νi + νj),

and

FN =

∞∫
0

dT
(
1
4πT

)d/2
e−m

2T
N−1∏
n=1

τn+1∫
0

dτn

×
N∏
i<j

exp
(
i
2
pi ∧ pj 12(νi + νj)ε(τji)

)

× exp

 N∑
i<j

pi · GBθ(τi, τj ; εi, εj) · pj
 . (A.6)
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Here, having in mind the generalization to all possible or-
derings, we have attached ε(τji) to the phase factor in or-
der to blindly count the ordering dependences. If we shuffle
the external legs, we obtain different diagrams with dif-
ferent phase factors. Thus all ordered integrals correspond
to all possible distinct Feynman diagrams. In this way, we
recover the full integral regions after summing all contri-
butions for fixed νi. Obviously, we then also have to sum
over all combinations of νi. As in Sect. 2.2 (2.8) is invari-
ant under the simultaneous constant shifts of all τ (by
noticing (2.9) and (A.4)), we can fix one of them in (2.8);
for example, τN = T , as has been assumed throughout
this section, and reproduce

ΓN = C(−λ)N
∑
νj

∫
dT e−m

2T

(
1
4πT

)d/2

×
N−1∏
i=1

T∫
0

dτi

 e(i/4) ∑
i<j pi∧pj(νi+νj)ε(τij)

× exp

1
2

N∑
i,j=1

pi · GBθ(τi, τj ; εi, εj) · pj
 .

Here, C is the normalization factor defined by the fraction
of the symmetry factor SN and the number of topologi-
cally distinct integration regions CN :

C =
SN
CN

. (A.7)

Following closely the arguments of [21], we will now de-
termine the combinatorial factor CN . If one expands the
effective action in powers of the coupling constant, the
combinatorial weight for the expansion of the Feynman
diagrams is obtained by shuffling the external interaction
vertices. One obtains

w =
SNn

T

N !
, (A.8)

where nT is the number of the topologically distinct dia-
grams out of these shuffled diagrams; S is the symmetry
factor for them. In the present case, this number w is given
by

w =
1

2 ·N · 2N . (A.9)

It comprises the trace-log factor 1/2, the 1/N coming from
the Taylor expansion of the one-loop form ln(1 + x), and
the coupling factor 2−N . (One may simply multiply 2−N

with the result (3.25) of [21]). Combining (A.8) and (A.9),
we obtain

SN =
(N − 1)!
2N+1nT

.

As CN is defined by

CN =
(N − 1)!
nT

,

we can put these into (A.7) and obtain

C =
1

2 · 2N ,

therefore proving that our worldline master formula coin-
cides with the Feynman diagrammatics result.
The commutative limit, θab → 0, also comes out cor-

rect, as all the 2N terms of the {νi} summation are re-
duced to the same, single contribution, reproducing the
commutative result.

B Worldline formulation of λ[Φ]3-theory:
Review

In this appendix, we recapitulate the worldline formula-
tion of commutative λ[Φ]3-theory, summarizing aspects
relevant for extension to a non-commutative setup. In the
background field method, the classical action is expanded
to

SC =
∫
ddx

1
2
ϕ(x){−∂2 +m2 + λΦ0(x)}ϕ(x) +O(ϕ3).

The one-loop effective action can be expressed, in a path
integral representation, by

Γ =
�

2

∫ ∞

0

dT
T

∫
x(T )=x(0)

Dx(τ)
∫

k(T )=k(0)

Dk(τ)

× Pτ exp
−

T∫
0

[
k2 +m2 − ik · ẋ+ λΦ0(x(τ))

]
dτ

 .

Instead of taking the obvious route of integrating over
k(τ), which is a Gaussian integral, bearing in mind the
application to a non-commutative setup, we will leave it
as is and expand the background field Φ0 first:

Γ =
�

2

∫ ∞

0

dT
T

∫
x(T )=x(0)

Dx(τ)
∫

k(T )=k(0)

Dk(τ)

× exp

−
T∫

0

(k2 +m2 − ik · ẋ)dτ


×
∞∑
N=0

(−λ)N
N∏
�=1

τl+1∫
0

dτ�Φ0(x(τ�)), with τN+1 = T.

The Feynman diagrams relevant for N -point Green func-
tions are generated automatically once the external field
is replaced by “plane waves” as follows:

Φ0(x(τ))→
N∑
�=1

exp[ip� · x(τ)].

Specifically, the substitution generates all possible order-
ings of the moduli of interaction vertices, τ�, along the
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worldline one loop, discarding double insertions of the
same momenta. It also generates, however, an extra N !
factor, as Φ0 ought to represent a single insertion of the
interaction vertex. One thus assigns 1/N ! at the Nth or-
der term in the effective action. These ordered τ integrals
are then summable over the full integration regions:

Γ [p1, · · · , pN ] = �

2

∫ ∞

0

dT
T

∫
x(T )=x(0)

Dx(τ)
∫

k(T )=k(0)

Dk(τ)

× exp

−
T∫

0

(k2 +m2 − ik · ẋ)dτ


×
∞∑
N=0

(−λ)N
N !

N∏
�=1

T∫
0

dτ�eip�·x(τ�).

The N -point Green functions, Γ (N), are defined by

Γ1−loop = �

∞∑
N=0

1
N !

Γ (N). (B.1)

Integrating over k(τ) first yields

Γ (N) =
1
2
(−λ)N

∫ ∞

0

dT
T

N (T )e−m2T

×
∫

x(T )=x(0)

Dx(τ)e−(1/4)
T∫

0
ẋ2dτ N∏

�=1

T∫
0

dτ�eip�·x(τ�),

where the normalization factor N (T ) is defined by

N (T ) =
∫

Dke−
T∫

0
k2dτ

and

N (T )
∫

x(0)=x(T )

Dxe−(1/4)
T∫

0
ẋ2dτ

=
(
1
4πT

)d/2
.

Integrating over x(τ), one obtains

Γ (N) =
1
2
(−λ)N

∫
dT
T

(
1
4πT

)d/2
e−m

2T
N∏
l=1

T∫
0

dτ�

× exp

 N∑
i<j

pi · GB(τi, τj) · pj
 , (B.2)

where GB is the one-loop bosonic worldline propagator:

GabB (τi, τj) = Gab
[
|τi − τj | − (τi − τj)2

T

]
.
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